Introduction
In modern cloud computing, serverless architectures have revolutionized how applications are developed and deployed. Serverless REST APIs eliminate the need for infrastructure management, enabling developers to focus purely on business logic. AWS, Azure, and GCP offer robust serverless services like AWS Lambda, Azure Functions, and Google Cloud Functions to handle API requests dynamically.
In this blog, we'll explore how to build a Serverless REST API using each cloud provider and deploy it efficiently.
Why Choose Serverless for REST APIs?
No Server Management: Fully managed execution environments.
Scalability: Automatically scales based on traffic.
Cost-Efficiency: Pay only for execution time, not idle servers.
High Availability: Built-in redundancy across cloud zones.
Architecture Overview
A typical Serverless REST API consists of:
API Gateway: Routes HTTP requests.
Function as a Service (FaaS): Processes requests.
Database (Optional): Stores and retrieves data.
Authentication: Secures API access.
Cloud-Specific Services
Feature | AWS | Azure | GCP |
Compute | AWS Lambda | Azure Functions | Google Cloud Functions |
API Management | Amazon API Gateway | Azure API Management | Google Cloud Endpoints |
Storage (Optional) | Amazon DynamoDB | Azure CosmosDB | Google Firestore |
Authentication | AWS Cognito | Azure AD B2C | Firebase Authentication |
Implementation: Serverless REST API
1. AWS: Lambda + API Gateway
Step 1: Create a Lambda Function
import json
def lambda_handler(event, context):
return {
'statusCode': 200,
'body': json.dumps({'message': 'Hello from AWS Lambda'})
}
Step 2: Deploy via Terraform
resource "aws_lambda_function" "api_lambda" {
function_name = "serverless_api"
runtime = "python3.8"
handler = "lambda_function.lambda_handler"
role = aws_iam_role.lambda_exec.arn
filename = "lambda.zip"
}
Step 3: Create an API Gateway
resource "aws_apigatewayv2_api" "http_api" {
name = "serverless-api"
protocol_type = "HTTP"
}
2. Azure: Azure Functions + API Management
Step 1: Create an Azure Function
import azure.functions as func
import json
def main(req: func.HttpRequest) -> func.HttpResponse:
return func.HttpResponse(json.dumps({'message': 'Hello from Azure Functions'}), mimetype="application/json")
Step 2: Deploy with Azure CLI
az functionapp create --name myServerlessAPI --resource-group myResourceGroup --consumption-plan-location eastus --runtime python --os-type Linux
Step 3: Configure API Management
az apim api create --name serverless-api --resource-group myResourceGroup --service-name myAPIMService --path /api
3. GCP: Cloud Functions + API Gateway
Step 1: Create a Cloud Function
def hello_world(request):
return {'message': 'Hello from Google Cloud Functions'}
Step 2: Deploy Using gcloud CLI
gcloud functions deploy hello_world --runtime python39 --trigger-http --allow-unauthenticated
Step 3: Set Up API Gateway
swagger: "2.0"
info:
title: Serverless API
version: 1.0.0
paths:
/hello:
get:
x-google-backend:
address: https://REGION-PROJECT_ID.cloudfunctions.net/hello_world
Testing the API Endpoints
After deployment, test API endpoints using cURL or Postman:
curl https://<API_GATEWAY_URL>/hello
Expected Response:
{"message": "Hello from Serverless API"}
Best Practices for Serverless APIs
Optimize Cold Starts
- Use Provisioned Concurrency (AWS) or Premium Plan (Azure).
Implement API Security
- Use OAuth, JWT, or API Keys.
Enable Logging & Monitoring
- AWS CloudWatch, Azure Monitor, GCP Logging.
Use Infrastructure as Code (IaC)
- Manage deployments via Terraform or CloudFormation.
Conclusion
We explored how to build a Serverless REST API using AWS, Azure, and GCP. Serverless architectures provide cost savings, scalability, and simplified deployment. By leveraging API Gateway + Functions, you can build a high-performance API with minimal operational overhead.
Next Steps:
✅ Extend the API with a database (DynamoDB, CosmosDB, Firestore).
✅ Secure endpoints with authentication (OAuth, JWT).
✅ Automate deployments using CI/CD pipelines.
🚀 Got questions? Drop a comment below!